Wheat transcriptome profiling reveals abscisic and gibberellic acid treatments regulate early-stage phytohormone defense signaling, cell wall fortification, and metabolic switches following Fusarium graminearum-challenge

小麦转录组分析表明,脱落酸和赤霉酸处理可调节禾谷镰刀菌攻击后的早期植物激素防御信号、细胞壁强化和代谢转换

阅读:12
作者:Leann M Buhrow, Ziying Liu, Dustin Cram, Tanya Sharma, Nora A Foroud, Youlian Pan, Michele C Loewen

Background

Treatment of wheat with the phytohormones abscisic acid (ABA) and gibberellic acid (GA) has been shown to affect Fusarium head blight (FHB) disease severity. However, the molecular mechanisms underlying the elicited phenotypes remain unclear. Toward addressing this gap in our knowledge, global transcriptomic profiling was applied to the FHB-susceptible wheat cultivar 'Fielder' to map the regulatory responses effected upon treatment with ABA, an ABA receptor antagonist (AS6), or GA in the presence or absence of Fusarium graminearum (Fg) challenge.

Conclusions

Observed exacerbation (misregulation) of classical defense mechanisms and cell wall fortifications upon ABA treatment are consistent with its ability to promote FHB severity and its proposed role as a fungal effector. In contrast, GA was found to modulate primary and secondary metabolism, suggesting a general metabolic shift underlying its reduction in FHB severity. While AS6 did not antagonize traditional ABA pathways, its impact on host defense and Fg responses imply potential for future investigation. Overall, by comparing these findings to those previously reported for four additional plant genotypes, an additive model of the wheat-Fg interaction is proposed in the context of phytohormone responses.

Results

Spike treatments resulted in a total of 30,876 differentially expressed genes (DEGs) identified in 'Fielder' (26,004) and the Fg (4872) pathogen. Topology overlap and correlation analyses defined 9689 wheat DEGs as Fg-related across the treatments. Further enrichment analyses demonstrated that these included expression changes within 'Fielder' defense responses, cell structural metabolism, molecular transport, and membrane/lipid metabolism. Dysregulation of ABA and GA crosstalk arising from repression of 'Fielder' FUS3 was noted. As well, expression of a putative Fg ABA-biosynthetic cytochrome P450 was detected. The co-applied condition of Fg + ABA elicited further up-regulation of phytohormone biosynthesis, as well as SA and ET signaling pathways and cell wall/polyphenolic metabolism. In contrast, co-applied Fg + GA mainly suppressed phytohormone biosynthesis and signaling, while modulating primary and secondary metabolism and flowering. Unexpectedly, co-applied Fg + AS6 did not affect ABA biosynthesis or signaling, but rather elicited antagonistic responses tied to stress, phytohormone transport, and FHB disease-related genes. Conclusions: Observed exacerbation (misregulation) of classical defense mechanisms and cell wall fortifications upon ABA treatment are consistent with its ability to promote FHB severity and its proposed role as a fungal effector. In contrast, GA was found to modulate primary and secondary metabolism, suggesting a general metabolic shift underlying its reduction in FHB severity. While AS6 did not antagonize traditional ABA pathways, its impact on host defense and Fg responses imply potential for future investigation. Overall, by comparing these findings to those previously reported for four additional plant genotypes, an additive model of the wheat-Fg interaction is proposed in the context of phytohormone responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。