SVD-based filtering to detect intraplaque hemorrhage using single wavelength photoacoustic imaging

使用单波长光声成像进行基于 SVD 的滤波以检测斑块内出血

阅读:6
作者:Roy van Hees, Jan-Willem Muller, Frans van de Vosse, Marcel Rutten, Marc van Sambeek, Min Wu, Richard Lopata

Aim

We aim to detect IPH with single wavelength PA imaging in vivo and to improve image quality. Approach: We developed a singular value decomposition (SVD)-based filter to detect the nonstationary and stationary components in ultrasound data. A PA mask was created to detect stationary (IPH) sources. The method was tested ex vivo using phantoms and in vivo in patients.

Conclusions

SVD-based filtering can successfully detect IPH using a single laser wavelength, opening up opportunities for more economical and cost-effective laser sources.

Results

The flow and IPH channels were successfully separated in the phantom data. We can also detect the PA signals from IPH and reject signals from the carotid lumen in vivo. Generalized contrast-to-noise ratio improved in both ex vivo and in vivo in US imaging. Conclusions: SVD-based filtering can successfully detect IPH using a single laser wavelength, opening up opportunities for more economical and cost-effective laser sources.

Significance

Intraplaque hemorrhage (IPH) is an important indicator of plaque vulnerability. Early detection could aid the prevention of stroke. Aim: We aim to detect IPH with single wavelength PA imaging in vivo and to improve image quality. Approach: We developed a singular value decomposition (SVD)-based filter to detect the nonstationary and stationary components in ultrasound data. A PA mask was created to detect stationary (IPH) sources. The method was tested ex vivo using phantoms and in vivo in patients. Results: The flow and IPH channels were successfully separated in the phantom data. We can also detect the PA signals from IPH and reject signals from the carotid lumen in vivo. Generalized contrast-to-noise ratio improved in both ex vivo and in vivo in US imaging. Conclusions: SVD-based filtering can successfully detect IPH using a single laser wavelength, opening up opportunities for more economical and cost-effective laser sources.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。