Aim
We aim to detect IPH with single wavelength PA imaging in vivo and to improve image quality. Approach: We developed a singular value decomposition (SVD)-based filter to detect the nonstationary and stationary components in ultrasound data. A PA mask was created to detect stationary (IPH) sources. The method was tested ex vivo using phantoms and in vivo in patients.
Conclusions
SVD-based filtering can successfully detect IPH using a single laser wavelength, opening up opportunities for more economical and cost-effective laser sources.
Results
The flow and IPH channels were successfully separated in the phantom data. We can also detect the PA signals from IPH and reject signals from the carotid lumen in vivo. Generalized contrast-to-noise ratio improved in both ex vivo and in vivo in US imaging. Conclusions: SVD-based filtering can successfully detect IPH using a single laser wavelength, opening up opportunities for more economical and cost-effective laser sources.
Significance
Intraplaque hemorrhage (IPH) is an important indicator of plaque vulnerability. Early detection could aid the prevention of stroke. Aim: We aim to detect IPH with single wavelength PA imaging in vivo and to improve image quality. Approach: We developed a singular value decomposition (SVD)-based filter to detect the nonstationary and stationary components in ultrasound data. A PA mask was created to detect stationary (IPH) sources. The method was tested ex vivo using phantoms and in vivo in patients. Results: The flow and IPH channels were successfully separated in the phantom data. We can also detect the PA signals from IPH and reject signals from the carotid lumen in vivo. Generalized contrast-to-noise ratio improved in both ex vivo and in vivo in US imaging. Conclusions: SVD-based filtering can successfully detect IPH using a single laser wavelength, opening up opportunities for more economical and cost-effective laser sources.
