Preliminary study on the function of the POLD1 (CDC2) EXON2 c.56G>A mutation

POLD1(CDC2)EXON2 c.56G>A突变功能的初步研究

阅读:5
作者:Jing Liu, Yu Liu, Jingxuan Fu, Chengeng Liu, Tingting Yang, Xiaomin Zhang, Min Cao, Peichang Wang

Background

Fanconi anemia (FA) is a rare recessive disease characterized by DNA damage repair deficiency, and DNA polymerase δ (whose catalytic subunit is encoded by POLD1, also known as CDC2) is closely related to DNA damage repair. Our previous study identified a novel POLD1 missense mutation c.56G>A (p. Arg19>His) in FA family members. However, the function of the POLD1 missense mutation is currently unknown. This study aimed to uncover the biological function of the POLD1 missense mutation.

Conclusions

The POLD1 mutation inhibited cell proliferation, slowed cell cycle progression, and reduced DNA damage repair.

Methods

Stable cell lines overexpressing wild-type POLD1 or mutant POLD1 (c.56G>A, p.Arg19His) were constructed by lentivirus infection. Cell growth curve analysis, cell cycle analysis, and a comet assay were used to analyze the function of the POLD1 mutation.

Results

The growth and proliferative ability of the cells with POLD1 mutation was decreased significantly compared with those of the wild-type cells (Student's t test, p < .05). The percentage of cells in the G0/G1 phase increased, and the percentage of cells in the S phase decreased significantly when POLD1 was mutated (Student's t test, p < .05). Moreover, the Olive tail moment value of the cells with the POLD1 mutation was significantly higher than that of the cells with wild-type POLD1 after H2 O2 treatment. Conclusions: The POLD1 mutation inhibited cell proliferation, slowed cell cycle progression, and reduced DNA damage repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。