miR-23b-3p Ameliorates LPS-Induced Pulmonary Fibrosis by Inhibiting EndMT via DPP4 Inhibition

miR-23b-3p 通过抑制 DPP4 来抑制 EndMT,从而改善 LPS 诱导的肺纤维化

阅读:7
作者:Linlin Yue #, Feng Chen #, Xin Liu, Chaoyu Wu, Jie Wang, Jiying Lai, Hongquan Zhu

Abstract

Acute respiratory distress syndrome is a disease triggered by severe pulmonary and systemic inflammation that may lead to fibrosis and the decline of lung function. Lung capillary endothelial-to-mesenchymal transition (EndMT) is one of the primary sources of fibroblasts in pulmonary fibrosis. The role of miRNAs as molecular markers of pulmonary fibrosis, and miRNAs as nucleic acid drugs has attracted increasing attention. To mock EndMT process, Human pulmonary microvascular endothelial cells (HPMECs) were induced with lipopolysaccharide (LPS). Similarly, LPS treatment was used to generate a mouse model of LPS-induced EndMT and pulmonary fibrosis. LPS-induced EndMT in HPMECs resulted in a significant reduction of miR-23b-3p. miR-23b-3p inhibited the interstitial transition of HPMECs, and miR-23b-3p could mediate this process via inhibiting dipeptidyl peptidase-4 (DPP4). Dual-luciferase assays confirmed the regulatory mechanism of miR-23b-3p. In our mouse model of LPS-induced pulmonary fibrosis, miR-23b-3p and a DPP4 inhibitor (sitagliptin) individually alleviated LPS-induced EndMT progression and pulmonary fibrosis, and their combined use achieved the strongest remission effect. To sum up, miR-23b-3p alleviates EndMT in pulmonary fibrosis by inhibiting the expression of DPP4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。