Bhlhe40 Represses PGC-1α Activity on Metabolic Gene Promoters in Myogenic Cells

Bhlhe40 抑制成肌细胞中代谢基因启动子上的 PGC-1α 活性

阅读:5
作者:Shih Ying Chung, Chien Han Kao, Francesc Villarroya, Hsin Yu Chang, Hsuan Chia Chang, Sheng Pin Hsiao, Gunn-Guang Liou, Shen Liang Chen

Abstract

PGC-1α is a transcriptional coactivator promoting oxidative metabolism in many tissues. Its expression in skeletal muscle (SKM) is induced by hypoxia and reactive oxidative species (ROS) generated during exercise, suggesting that PGC-1α might mediate the cross talk between oxidative metabolism and cellular responses to hypoxia and ROS. Here we found that PGC-1α directly interacted with Bhlhe40, a basic helix-loop-helix (bHLH) transcriptional repressor induced by hypoxia, and protects SKM from ROS damage, and they cooccupied PGC-1α-targeted gene promoters/enhancers, which in turn repressed PGC-1α transactivational activity. Bhlhe40 repressed PGC-1α activity through recruiting histone deacetylases (HDACs) and preventing the relief of PGC-1α intramolecular repression caused by its own intrinsic suppressor domain. Knockdown of Bhlhe40 mRNA increased levels of ROS, fatty acid oxidation, mitochondrial DNA, and expression of PGC-1α target genes. Similar effects were also observed when the Bhlhe40-mediated repression was rescued by a dominantly active form of the PGC-1α-interacting domain (PID) from Bhlhe40. We further found that Bhlhe40-mediated repression can be largely relieved by exercise, in which its recruitment to PGC-1α-targeted cis elements was significantly reduced. These observations suggest that Bhlhe40 is a novel regulator of PGC-1α activity repressing oxidative metabolism gene expression and mitochondrion biogenesis in sedentary SKM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。