Granule cells control recovery from classical conditioned fear responses in the zebrafish cerebellum

颗粒细胞控制斑马鱼小脑经典条件性恐惧反应的恢复

阅读:6
作者:Koji Matsuda, Masayuki Yoshida, Koichi Kawakami, Masahiko Hibi, Takashi Shimizu

Abstract

Although previous studies show that the cerebellum is involved in classical fear conditioning, it is not clear which components in the cerebellum control it or how. We addressed this issue using a delayed fear-conditioning paradigm with late-stage zebrafish larvae, with the light extinguishment as the conditioned stimulus (CS) and an electric shock as the unconditioned stimulus (US). The US induced bradycardia in the restrained larvae. After paired-associate conditioning with the CS and US, a substantial population of the larvae displayed CS-evoked bradycardia responses. To investigate the roles of the zebrafish cerebellum in classical fear conditioning, we expressed botulinum toxin or the Ca2+ indicator GCaMP7a in cerebellar neurons. The botulinum-toxin-dependent inhibition of granule-cell transmissions in the corpus cerebelli (CCe, the medial lobe) did not suppress the CS-evoked bradycardia response, but rather prolonged the response. We identified cerebellar neurons with elevated CS-evoked activity after the conditioning. The CS-evoked activity of these neurons was progressively upregulated during the conditioning and was downregulated with repetition of the unpaired CS. Some of these neurons were activated immediately upon the CS presentation, whereas others were activated after a delay. Our findings indicate that granule cells control the recovery from conditioned fear responses in zebrafish.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。