Mutation of thyroid hormone receptor-β in mice predisposes to the development of mammary tumors

小鼠甲状腺激素受体 β 突变导致乳腺肿瘤发生

阅读:4
作者:C J Guigon, D W Kim, M C Willingham, S-Y Cheng

Abstract

Correlative data suggest that thyroid hormone receptor-β (TRβ) mutations could increase the risk of mammary tumor development, but unequivocal evidence is still lacking. To explore the role of TRβ mutants in vivo in breast tumor development and progression, we took advantage of a knock-in mouse model harboring a mutation in the Thrb gene encoding TRβ (Thrb(PV) mouse). Although in adult nulliparous females, a single ThrbPV allele did not contribute to mammary gland abnormalities, the presence of two ThrbPV alleles led to mammary hyperplasia in ∼36% Thrb(PV/PV) mice. The ThrbPV mutation further markedly augmented the risk of mammary hyperplasia in a mouse model with high susceptibility to mammary tumors (Pten(+/-) mouse), as demonstrated by the occurrence of mammary hyperplasia in ∼60% of Thrb(PV/+)Pten(+/-) and ∼77% of Thrb(PV/PV)Pten(+/-) mice versus ∼33% of Thrb(+/+)Pten(+/-) mice. The Thrb(PV) mutation increased the activity of signal transducer and activator of transcription (STAT5) to increase cell proliferation and the expression of the STAT5 target gene encoding β-casein in the mammary gland. We next sought to understand the molecular mechanism underlying STAT5 overactivation by TRβPV. Cell-based studies with a breast cancer cell line (T47D cells) showed that thyroid hormone (T3) repressed STAT5 signaling in TRβ-expressing cells through decreasing STAT5-mediated transcription activity and target gene expression, whereas sustained STAT5 signaling was observed in TRβPV-expressing cells. Collectively, these findings show for the first time that a TRβ mutation promotes the development of mammary hyperplasia via aberrant activation of STAT5, thereby conferring a fertile genetic ground for tumorigenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。