Atorvastatin Inhibits Ferroptosis of H9C2 Cells by regulatingSMAD7/Hepcidin Expression to Improve Ischemia-Reperfusion Injury

阿托伐他汀通过调控SMAD7/Hepcidin表达抑制H9C2细胞铁凋亡改善缺血再灌注损伤

阅读:9
作者:You Peng, Bin Liao, Yan Zhou, Wei Zeng, Zhi-Yu Zeng

Background

Ferroptosis plays a key role in cardiomyopathy. Atorvastatin (ATV) has a protective effect on ischemia-reperfusion (I/R) cardiomyopathy. The

Conclusions

ATV reversed the decline in H9C2 cell viability, mitochondrial shrinkage, and ROS elevation, and improved the myocardium ferroptosis through the SMAD7/hepcidin pathway in I/R rat.

Methods

H9C2 cells and cardiomyopathy rats were induced by hypoxia/reoxygenation (H/R) and I/R to construct in vitro and in vivo models. Cell viability was determined by CCK8. Cardiac histopathology was observed by HE staining. Transmission electron microscope (TEM) was used to observe the mitochondrial morphology. The reactive oxygen species (ROS) content in cells was analyzed by the biochemical method. ELISA was conducted to calculate the concentrations of total iron/Fe2+ and hepcidin. The expression of ferroptosis and SMAD pathway-related genes were detected by qPCR. Western blot was performed to detect the expression levels of ferroptosis and SMAD pathway-related proteins.

Results

In H9C2 cells, ATV reversed the decline in cell viability, mitochondrial shrinkage, and ROS elevation induced by erastin or H/R. The concentration of total iron and Fe2+ in H/R-induced H9C2 cells increased, and the protein expression of FPN1 decreased. After ATV treatment, the concentration of total iron and Fe2+ decreased, and the protein expression of FPN1 increased. The expression of the SMAD7 gene in H/R-induced H9C2 cells decreased, and the expression of the hepcidin gene increased, which were reversed by ATV. When SMAD7 was knocked down, ATV treatment failed to produce the above effect. ATV also improved ferroptosis in I/R rat myocardium through the SMAD7/hepcidin pathway. Conclusions: ATV reversed the decline in H9C2 cell viability, mitochondrial shrinkage, and ROS elevation, and improved the myocardium ferroptosis through the SMAD7/hepcidin pathway in I/R rat.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。