LncRNA PAXIP1-AS1 fosters the pathogenesis of pulmonary arterial hypertension via ETS1/WIPF1/RhoA axis

LncRNA PAXIP1-AS1 通过 ETS1/WIPF1/RhoA 轴促进肺动脉高压的发病机制

阅读:5
作者:Rong Song, Si Lei, Song Yang, Shang-Jie Wu

Abstract

Pulmonary arterial hypertension (PAH) is a life-threatening disease featured with elevated pulmonary vascular resistance and progressive pulmonary vascular remodelling. It has been demonstrated that lncRNA PAXIP1-AS1 could influence the transcriptome in PAH. However, the exact molecular mechanism of PAXIP1-AS1 in PAH pathogenesis remains largely unknown. In this study, in vivo rat PAH model was established by monocrotaline (MCT) induction and hypoxia was used to induce in vitro PAH model using human pulmonary artery smooth muscle cells (hPASMCs). Histological examinations including H&E, Masson's trichrome staining and immunohistochemistry were subjected to evaluate the pathological changes of lung tissues. Expression patterns of PAXIP1-AS1 and RhoA were assessed using qRT-PCR and Western blotting, respectively. CCK-8, BrdU assay and immunofluorescence of Ki67 were performed to measure the cell proliferation. Wound healing and transwell assays were employed to evaluate the capacity of cell migration. Dual-luciferase reporter assay, co-immunoprecipitation, RIP and CHIP assays were employed to verify the PAXIP1-AS1/ETS1/WIPF1/RhoA regulatory network. It was found that the expression of PAXIP1-AS1 and RhoA was remarkably higher in both lung tissues and serum of MCT-induced PAH rats, as well as in hypoxia-induced hPASMCs. PAXIP1-AS1 knockdown remarkably suppressed hypoxia-induced cell viability and migration of hPASMCs. PAXIP1-AS1 positively regulated WIPF1 via recruiting transcriptional factor ETS1, of which knockdown reversed PAXIP1-AS1-mediated biological functions. Co-immunoprecipitation validated the WIPF1/RhoA interaction. In vivo experiments further revealed the role of PAXIP1-AS1 in PAH pathogenesis. In summary, lncRNA PAXIP1-AS1 promoted cell viability and migration of hPASMCs via ETS1/WIPF1/RhoA, which might provide a potential therapeutic target for PAH treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。