Microglia demonstrate age-dependent interaction with amyloid-β fibrils

小胶质细胞与淀粉样β蛋白原纤维表现出年龄依赖性的相互作用

阅读:6
作者:Angela Marie Floden, Colin Kelly Combs

Abstract

Alzheimer's disease (AD) is an age-associated disease characterized by increased accumulation of extracellular amyloid-β (Aβ) plaques within the brain. Histological examination has also revealed profound microglial activation in diseased brains often in association with these fibrillar peptide aggregates. The paradoxical presence of increased, reactive microglia yet accumulating extracellular debris suggests that these cells may be phagocytically compromised during disease. Prior work has demonstrated that primary microglia from adult mice are unable to phagocytose fibrillar Aβ1-42 in vitro when compared to microglia cultured from early postnatal animals. These data suggest that microglia undergo an age-associated decrease in microglial ability to interact with Aβ fibrils. In order to better define a temporal profile of microglia-Aβ interaction, acutely isolated, rather than cultured, microglia from 2 month, 6 month, and postnatal day 0 C57BL/6 mice were compared. Postnatal day 0 microglia demonstrated a CD47 dependent ability to phagocytose Aβ fibrils that was lost by 6 months. This corresponded with the ability of postnatal day 0 but not adult microglia to decrease Aβ immunoreactive plaque load from AD sections in vitro. In spite of limited Aβ uptake ability, adult microglia had functional phagocytic uptake of bacterial bioparticles and demonstrated the ability to adhere to both Aβ plaques and in vitro fibrillized Aβ. These data demonstrate a temporal profile of specifically Aβ-microglia interaction with a critical developmental period at 6 months in which cells remain able to interact with Aβ fibrils but lose their ability to phagocytose it.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。