Systematic changes in circumpolar dust transport to the Subantarctic Pacific Ocean over the last two glacial cycles

过去两个冰期期间环极尘埃向亚南极太平洋输送的系统性变化

阅读:7
作者:Torben Struve, Jack Longman, Martin Zander, Frank Lamy, Gisela Winckler, Katharina Pahnke

Abstract

The input of the soluble micronutrients iron (Fe) and/or manganese (Mn) by mineral dust stimulates net primary productivity in the Fe/Mn-deficient Southern Ocean. This mechanism is thought to increase carbon export, thus reducing atmospheric CO2 during the Pleistocene glacial cycles. Yet, relatively little is known about changes in the sources and transport pathways of Southern Hemisphere dust over glacial cycles. Here, we use the geochemical fingerprint of the dust fraction in marine sediments and multiisotope mixture modeling to identify changes in dust transport to the South Pacific Subantarctic Zone (SAZ). Our data show that dust from South America dominated the South Pacific SAZ during most of the last 260,000 a with maximum contributions of up to ∼70% in the early part of the glacial cycles. The enhanced dust-Fe fluxes of the latter parts of the glacial cycles show increased contributions from Australia and New Zealand, but South American dust remains the dominant component. The systematic changes in dust provenance correspond with grain size variations, consistent with the circumpolar transport of dust by the westerly winds. Maximum contributions of dust from more proximal sources in Australia and New Zealand (up to ∼63%) paired with a finer dust grain size indicate reduced westerly wind speeds over the South Pacific SAZ during deglacial and peak interglacial intervals. These quantitative dust provenance changes provide source-specific dust-Fe fluxes in the South Pacific SAZ and show how their systematic changes in magnitude and timing influence the Southern Ocean dust-Fe feedback on glacial-interglacial to millennial time scales.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。