Robust, site-specifically immobilized phenylalanine ammonia-lyases for the enantioselective ammonia addition of cinnamic acids

稳健、位点特异性固定化苯丙氨酸氨裂解酶,用于肉桂酸的对映选择性氨加成

阅读:5
作者:Krisztina Boros, Mădălina Elena Moisă, Csaba Levente Nagy, Csaba Paizs, Monica Ioana Toşa, László Csaba Bencze

Abstract

Phenylalanine ammonia-lyases (PALs) catalyse the non-oxidative deamination of l-phenylalanine to trans-cinnamic acid, while in the presence of high ammonia concentration, the synthetically attractive reverse reaction occurs. Although they have been intensively studied, the wider application of PALs for the large scale synthesis of non-natural amino acids is still rather limited, mainly due to the decreased operational stability of PALs under the high ammonia concentration conditions of ammonia addition. Herein, we describe the development of a highly stable and active immobilized PAL-biocatalyst obtained through site-specific covalent immobilization onto single-walled carbon nanotubes (SWCNTs), employing maleimide/thiol coupling of engineered enzymes containing surficial Cys residues. The immobilization method afforded robust biocatalysts (by strong covalent attachment to the support) and allowed modulation of enzymatic activity (by proper selection of binding site, controlling the orientation of the enzyme attached to the support). The novel biocatalysts were investigated in PAL-catalyzed reactions, focusing on the synthetically challenging ammonia addition reaction. The optimization of the immobilization (enzyme load) and reaction conditions (substrate : biocatalyst ratio, ammonia source, reaction temperature) involving the best performing biocatalyst SWCNTNH2 -SS-PcPAL was performed. The biocatalyst, under the optimal reaction conditions, showed high catalytic efficiency, providing excellent conversion (c ∼90% in 10 h) of cinnamic acid into l-Phe, and more importantly, possesses high operational stability, maintaining its high efficiency over >7 reaction cycles. Moreover, the site-specifically immobilized PcPAL L134A/S614C and PcPAL I460V/S614C variants were successfully applied in the synthesis of several l-phenylalanine analogues of high synthetic value, providing perspectives for the efficient replacement of classical synthetic methods for l-phenylalanines with a mild, selective and eco-friendly enzymatic alternative.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。