Ginsenoside Rh2 inhibits CBP/p300-mediated FOXO3a acetylation and epilepsy-induced oxidative damage via the FOXO3a-KEAP1-NRF2 pathway

人参皂苷 Rh2 通过 FOXO3a-KEAP1-NRF2 通路抑制 CBP/p300 介导的 FOXO3a 乙酰化和癫痫引起的氧化损伤

阅读:7
作者:Jingheng Wu, Shuai Wang, Wujun Zhao, Miaomiao Li, Shaoyi Li

Abstract

Epilepsy is a chronic disease that affects a wide range of people. Furthermore, a third of patients suffering from epileptic seizures do not respond to antiepileptic drugs. In recent years, increasing attention has focused on the role of oxidative stress in acquired epilepsy, and adjuvant antiepileptic drugs to reduce oxidative stress may be a new therapeutic strategy. In this study ginsenoside Rh2 was resistant to oxidative stress induced by epileptic activity in vivo and in vitro. Using online databases, we identified forkhead box O3a (FOXO3a) overexpression in epilepsy tissue and validated this in vitro, in vivo, and in clinical tissues of patients with epilepsy. An in vitro epilepsy model revealed that the overexpression of FOXO3a led to more severe oxidative stress, while the knockdown of FOXO3a had a protective effect on SH-SY5Y cells. Moreover, our results showed that the positive effect of FOXO3a on oxidative stress was caused by the transcriptional activation of Kelch-like ECH-associated protein 1 (KEAP1), a negative regulator of nuclear factor erythroid 2-related factor 2 (NRF2). We also found that ginsenoside Rh2 can directly inhibit the activation of FOXO3a by selectively blocking CREB-binding protein (CBP)/p300-mediated FOXO3a acetylation and play a role in regulating the KEAP1-NRF2 pathway to resist oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。