NSC48160 targets AMPKα to ameliorate nonalcoholic steatohepatitis by inhibiting lipogenesis and mitochondrial oxidative stress

NSC48160通过靶向AMPKα抑制脂肪生成和线粒体氧化应激,从而改善非酒精性脂肪性肝炎。

阅读:3
作者:Jiaxin Zhang ,Zuojia Liu ,Xunzhe Yin ,Erkang Wang ,Jin Wang

Abstract

Hepatic steatosis, which is triggered by dysregulation of lipid metabolism and redox equilibrium in the liver, is regarded as a risk factor in the non-alcoholic fatty liver disease (NAFLD). However, pharmacologic engagement of this process is difficult. We identified the small molecule NSC48160 as an effective agent against nonalcoholic steatohepatitis (NASH). We found that NSC48160 significantly lowered hepatic lipid levels in vitro and in vivo by activating the AMPKα-dependent pathway. AMPKα regulated its downstream pathway involved in lipogenesis (SREBP-1c/FASN pathway) and fatty acid oxidation (PPARα pathway). Metabonomics analysis combined with RNA-sequencing profiling revealed that NSC48160-induced lipogenesis is modulated by lipid metabolism. Moreover, NSC48160 dramatically reduces reactive oxygen species (ROS) production, restores the levels of the membrane potential and NAD+/NADH ratio, and improves mitochondrial respiration. These findings suggest that NSC48160 is a promising hit compound in the pursuit of a pharmacological approach in the treatment of NASH. Keywords: Biochemistry; Metabolomics; Pharmacology; Physiology; Structural biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。