Nanostructured Catalyst Layer Allowing Production of Ultralow Loading Electrodes for Polymer Electrolyte Membrane Fuel Cells with Superior Performance

纳米结构催化剂层可生产性能卓越的聚合物电解质膜燃料电池超低负载电极

阅读:8
作者:Colleen Jackson, Michalis Metaxas, Jack Dawson, Anthony R Kucernak

Abstract

This study introduces a simple method to produce ultralow loading catalyst-coated membrane electrodes, with an integrated carbon "nanoporous layer", for use in polymer electrolyte membrane fuel cells or other electrochemical devices. This approach allows fabrication of electrodes with loadings down to 5.2 μgPt cm-2 on the anode and cathode (total 10.4 μgPt cm-2, Pt3Zn/C catalyst) in a controlled, uniform, and reproducible manner. These layers achieve high utilization of the catalyst as measured through electrochemical surface area and mass specific activities. Electrodes composed of Pt/C, PtNi/C, Pt3Co/C, and Pt3Zn/C catalysts containing 5.2-7.1 μgPt cm-2 have been fabricated and tested. These electrodes showed an impressive performance of 111 ± 8 A mgPt-1 at 0.65 V on Pt3Co/C with a power density of 31 ± 2 kW gPt,total-1, about double that of the best previous literature electrodes under the same operating conditions. The performance appears apparently mass transport free and dominated by electrokinetics over a very wide potential range, and thus, these are ideal systems to study oxygen electrokinetics within the fuel cell environment. The improved performance is associated with reduced "contact resistance" and more specifically a reduction in the resistance to lateral current flow in the catalyst layer. Analytical expressions for the effect illuminate approaches to improve electrode design for electrochemical devices in which catalyst utilization is key.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。