A unique hybrid renal mononuclear phagocyte activation phenotype in murine systemic lupus erythematosus nephritis

小鼠系统性红斑狼疮肾炎中独特的混合肾单核吞噬细胞活化表型

阅读:8
作者:Ramalingam Bethunaickan, Celine C Berthier, Meera Ramanujam, Ranjit Sahu, Weijia Zhang, Yezou Sun, Erwin P Bottinger, Lionel Ivashkiv, Matthias Kretzler, Anne Davidson

Abstract

Renal infiltration with mononuclear cells is associated with poor prognosis in systemic lupus erythematosus. A renal macrophage/dendritic cell signature is associated with the onset of nephritis in NZB/W mice, and immune-modulating therapies can reverse this signature and the associated renal damage despite ongoing immune complex deposition. In nephritic NZB/W mice, renal F4/80(hi)/CD11c(int) macrophages are located throughout the interstitium, whereas F4/80(lo)/CD11c(hi) dendritic cells accumulate in perivascular lymphoid aggregates. We show here that F4/80(hi)/CD11c(int) renal macrophages have a Gr1(lo)/Ly6C(lo)/VLA4(lo)/MHCII(hi)/CD43(lo)/CD62L(lo) phenotype different from that described for inflammatory macrophages. At nephritis onset, F4/80(hi)/CD11c(int) cells upregulate cell surface CD11b, acquire cathepsin and matrix metalloproteinase activity, and accumulate large numbers of autophagocytic vacuoles; these changes reverse after the induction of remission. Latex bead labeling of peripheral blood Gr1(lo) monocytes indicates that these are the source of F4/80(hi)/CD11c(int) macrophages. CD11c(hi)/MHCII(lo) dendritic cells are found in the kidneys only after proteinuria onset, turnover rapidly, and disappear rapidly after remission induction. Gene expression profiling of the F4/80(hi)/CD11c(int) population displays increased expression of proinflammatory, regulatory, and tissue repair/degradation-associated genes at nephritis onset that reverses with remission induction. Our findings suggest that mononuclear phagocytes with an aberrant activation profile contribute to tissue damage in lupus nephritis by mediating both local inflammation and excessive tissue remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。