Sp1 Inhibits PGC-1α via HDAC2-Catalyzed Histone Deacetylation in Chronic Constriction Injury-Induced Neuropathic Pain

Sp1 通过 HDAC2 催化的组蛋白去乙酰化抑制慢性压迫性损伤引起的神经性疼痛中的 PGC-1α

阅读:6
作者:Jiamin Miao, Zhengjie Chen, Yue Wu, Qian Hu, Tianjiao Ji

Background

Our previous study has illuminated that PGC-1α downregulation promoted chronification of pain after burn injury. RNA-seq analysis predicted association between Sp1 and chronic constriction injury (CCI)-provoked neuropathic pain. Further ChIP-Atlas data investigation suggested the binding to Sp1 to PGC-1α. Thereby, we performed this study to illustrate the functional relevance of the Sp1/PGC-1α axis in neuropathic pain.

Conclusion

This study elucidated the promoting effects of Sp1 on CCI-induced neuropathic pain via the HDAC2/PGC-1α axis.

Methods

Neuropathic pain was induced by CCI in vivo in rats, followed by assessment of neuropathic pain-like behaviors. The expression of Sp1 and correlated genes was determined in CCI rat spinal cord tissues. Furthermore, microglia were exposed to lipopolysaccharide (LPS) to mimic inflammation and then cocultured with neurons. Knockdown and ectopic expression methods were used in vivo and in vitro to define the role the Sp1/HDAC2/PGC-1α axis.

Results

Sp1 expression was upregulated in spinal cord tissues of CCI rats. Silencing Sp1 ameliorated CCI-induced neuropathic pain, as reflected by elevated paw withdrawal threshold and paw withdrawal latency, as well as alleviated microglia activation, neuronal dysfunction, inflammatory responses, mitochondrial dysfunction, and oxidative stress in spinal cord tissues. Sp1 knockdown also reversed LPS-induced microglial inflammation and neuronal dysfunction. Sp1 promoted histone deacetylation in the PGC-1α promoter and inhibited PGC-1α expression via recruiting HDAC2. PGC-1α overexpression diminished CCI-induced neuropathic pain and LPS-induced inflammation and mitochondrial dysfunction, based on which Sp1 aggravated microglial inflammation and neuronal dysfunction in neuropathic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。