Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma

肿瘤相关反应性星形胶质细胞有助于胶质母细胞瘤中免疫抑制环境的演变

阅读:6
作者:Dieter Henrik Heiland, Vidhya M Ravi, Simon P Behringer, Jan Hendrik Frenking, Julian Wurm, Kevin Joseph, Nicklas W C Garrelfs, Jakob Strähle, Sabrina Heynckes, Jürgen Grauvogel, Pamela Franco, Irina Mader, Matthias Schneider, Anna-Laura Potthoff, Daniel Delev, Ulrich G Hofmann, Christian Fung, Jürg

Abstract

Reactive astrocytes evolve after brain injury, inflammatory and degenerative diseases, whereby they undergo transcriptomic re-programming. In malignant brain tumors, their function and crosstalk to other components of the environment is poorly understood. Here we report a distinct transcriptional phenotype of reactive astrocytes from glioblastoma linked to JAK/STAT pathway activation. Subsequently, we investigate the origin of astrocytic transformation by a microglia loss-of-function model in a human organotypic slice model with injected tumor cells. RNA-seq based gene expression analysis of astrocytes reveals a distinct astrocytic phenotype caused by the coexistence of microglia and astrocytes in the tumor environment, which leads to a large release of anti-inflammatory cytokines such as TGFβ, IL10 and G-CSF. Inhibition of the JAK/STAT pathway shifts the balance of pro- and anti-inflammatory cytokines towards a pro-inflammatory environment. The complex interaction of astrocytes and microglia cells promotes an immunosuppressive environment, suggesting that tumor-associated astrocytes contribute to anti-inflammatory responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。