Decreased dyskerin levels as a mechanism of telomere shortening in X-linked dyskeratosis congenita

角化不良蛋白水平降低是 X 连锁先天性角化不良症中端粒缩短的机制

阅读:9
作者:Erin M Parry, Jonathan K Alder, Stella S Lee, John A Phillips 3rd, James E Loyd, Priya Duggal, Mary Armanios

Abstract

Dyskeratosis congenita (DC) is a premature ageing syndrome characterised by short telomeres. An X-linked form of DC is caused by mutations in DKC1 which encodes dyskerin, a telomerase component that is essential for telomerase RNA stability. However, mutations in DKC1 are identifiable in only half of X-linked DC families. A four generation family with pulmonary fibrosis and features of DC was identified. Affected males showed the classic mucocutaneous features of DC and died prematurely from pulmonary fibrosis. Although there were no coding sequence or splicing variants, genome wide linkage analysis of 16 individuals across four generations identified significant linkage at the DKC1 locus, and was accompanied by reduced dyskerin protein levels in affected males. Decreased dyskerin levels were associated with compromised telomerase RNA levels and very short telomeres. These data identify decreased dyskerin levels as a novel mechanism of DC, and indicate that intact dyskerin levels, in the absence of coding mutations, are critical for telomerase RNA stability and for in vivo telomere maintenance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。