Microfluidic Giant Polymer Vesicles Equipped with Biopores for High-Throughput Screening of Bacteria

配备生物孔的微流体巨型聚合物囊泡可用于细菌的高通量筛选

阅读:6
作者:Lukas Heuberger, Daniel Messmer, Elena C Dos Santos, Dominik Scherrer, Emanuel Lörtscher, Cora-Ann Schoenenberger, Cornelia G Palivan

Abstract

Understanding the mechanisms of antibiotic resistance is critical for the development of new therapeutics. Traditional methods for testing bacteria are often limited in their efficiency and reusability. Single bacterial cells can be studied at high throughput using double emulsions, although the lack of control over the oil shell permeability and limited access to the droplet interior present serious drawbacks. Here, a straightforward strategy for studying bacteria-encapsulating double emulsion-templated giant unilamellar vesicles (GUVs) is introduced. This microfluidic approach serves to simultaneously load bacteria inside synthetic GUVs and to permeabilize their membrane with the pore-forming peptide melittin. This enables antibiotic delivery or the influx of fresh medium into the GUV lumen for highly parallel cultivation and antimicrobial efficacy testing. Polymer-based GUVs proved to be efficient culture and analysis microvessels, as microfluidics allow easy selection and encapsulation of bacteria and rapid modification of culture conditions for antibiotic development. Further, a method for in situ profiling of biofilms within GUVs for high-throughput screening is demonstrated. Conceivably, synthetic GUVs equipped with biopores can serve as a foundation for the high-throughput screening of bacterial colony interactions during biofilm formation and for investigating the effect of antibiotics on biofilms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。