Embedding Ultrafine and High-Content Pt Nanoparticles at Ceria Surface for Enhanced Thermal Stability

在二氧化铈表面嵌入超细高含量 Pt 纳米粒子以增强热稳定性

阅读:6
作者:Jingshan S Du, Ting Bian, Junjie Yu, Yingying Jiang, Xiaowei Wang, Yucong Yan, Yi Jiang, Chuanhong Jin, Hui Zhang, Deren Yang

Abstract

Ultrafine Pt nanoparticles loaded on ceria (CeO2) are promising nanostructured catalysts for many important reactions. However, such catalysts often suffer from thermal instability due to coarsening of Pt nanoparticles at elevated temperatures, especially for those with high Pt loading, which leads to severe deterioration of catalytic performances. Here, a facile strategy is developed to improve the thermal stability of ultrafine (1-2 nm)-Pt/CeO2 catalysts with high Pt content (≈14 wt%) by partially embedding Pt nanoparticles at the surface of CeO2 through the redox reaction at the solid-solution interface. Ex situ heating studies demonstrate the significant increase in thermal stability of such embedded nanostructures compared to the conventional loaded catalysts. The microscopic pathways for interparticle coarsening of Pt embedded or loaded on CeO2 are further investigated by in situ electron microscopy at elevated temperatures. Their morphology and size evolution with heating temperature indicate that migration and coalescence of Pt nanoparticles are remarkably suppressed in the embedded structure up to about 450 °C, which may account for the improved thermal stability compared to the conventional loaded structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。