Precise Protein Photolithography (P3): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist

精准蛋白质光刻技术 (P3):以丝素蛋白轻链为抗蚀剂的高性能生物图案化

阅读:5
作者:Wanpeng Liu, Zhitao Zhou, Shaoqing Zhang, Zhifeng Shi, Justin Tabarini, Woonsoo Lee, Yeshun Zhang, S N Gilbert Corder, Xinxin Li, Fei Dong, Liang Cheng, Mengkun Liu, David L Kaplan, Fiorenzo G Omenetto, Guozheng Zhang, Ying Mao, Tiger H Tao

Abstract

Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein-based microstructures using UV-photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein-based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer-scale high resolution patterning of bio-microstructures using well-defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein-based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。