Isolation and Characterization of Human Synovial Fluid-Derived Mesenchymal Stromal Cells from Popliteal Cyst

腘窝囊肿中人滑液衍生间充质基质细胞的分离和鉴定

阅读:5
作者:Fang Li #, Jianglin Chen #, Mengjia Gong, Yang Bi, Chengchen Hu, Yuanyuan Zhang, Ming Li

Abstract

Mesenchymal stem cells (MSCs) are multipotent progenitor cells in adult tissues. The aim of this study is to isolate and identify synovial fluid-derived mesenchymal stromal cells (SF-MSCs) from the popliteal cyst fluid of pediatric patients. SF-MSCs were collected from the popliteal cyst fluid of pediatric patients during cystectomy surgery. After cyst fluid extraction and adherent culturing, in vitro morphology, growth curve, and cell cycle were observed. The expression of stem cell surface markers was analyzed by flow cytometry, and expression of cell marker protein was detected by immunofluorescence. SF-MSCs were cultured in osteogenic, adipogenic, and chondrogenic differentiation medium. The differentiation potential of SF-MSCs was analyzed by alkaline phosphatase (Alizarin Red), Oil Red O, and Alcian blue. Antibody detection of human angiogenesis-related proteins was performed compared with bone marrow mesenchymal stem cells (BM-MSCs). The results show that SF-MSCs from the popliteal cyst fluid of pediatric patients showed a shuttle appearance and logarithmic growth. Flow cytometry analysis revealed that SF-MSCs were negative for hematopoietic lineage markers (CD34, CD45) and positive for MSC markers (CD44, CD73, CD90, and CD105). Interstitial cell marker (vimentin) and myofibroblast-like cell marker alpha-smooth muscle actin (α-SMA) were positive. These cells could differentiate into osteogenic, adipogenic, and chondrogenic lineages, respectively. Several types of human angiogenesis-related proteins were detected in the cell secretory fluid. These results show that we successfully obtained SF-MSCs from the popliteal cyst fluid of pediatric patients, which have the potential to be a valuable source of MSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。