miR-1301-3p promotes the proliferation and migration of lung cancer cells via direct repression of polymerase I and transcript release factor

miR-1301-3p通过直接抑制聚合酶I和转录释放因子促进肺癌细胞增殖和迁移

阅读:6
作者:Yun Wu, Qianwen Shen, Xiaoyu Chen, Yue Wu, Yuxu Niu, Fanzhen Lv

Abstract

Aberrant expression of microRNAs (miRNAs or miRs) is associated with a number of human diseases, including lung cancer. Although numerous differentially expressed miRNAs have been identified in lung cancer via microarray and sequencing methods, to the best of our knowledge, only a small portion of these miRNAs have been experimentally verified. In the present study, miR-1301-3p expression levels in lung tumor tissues and lung cancer cells were measured by reverse transcription-quantitative PCR (RT-qPCR) and by analyzing previously published data. Cell Counting Kit-8 and Transwell assays were used to analyze the function of miR-1301-3p in lung cancer tissues and cells. Bioinformatics analysis, RT-qPCR, western blotting and a dual-luciferase reporter assay were performed to investigate the mechanism of miR-1301-3p in lung cancer cells. It was identified that miR-1301-3p is an upregulated miRNA in lung cancer via analyzing previously published microarray and The Cancer Genome Atlas-lung squamous cell carcinoma project data, and the upregulation of miR-1301-3p was confirmed in collected clinical samples and cells. Inhibition of miR-1301-3p suppressed lung cancer cell proliferation and migration. In addition, miR-1301-3p inhibition upregulated E-cadherin, an epithelial cell maker, and downregulated vimentin, a mesenchymal cell marker. Using bioinformatics analysis, it was revealed that polymerase I and transcript release factor (PTRF) is a target of miR-1301-3p. RT-qPCR, western blotting and dual-luciferase reporter assays demonstrated that PTRF is targeted by miR-1301-3p in lung cancer cells. The rescue experiments indicated that silencing PTRF could attenuate the inhibition of cell proliferation and migration induced by miR-1301-3p inhibitor in lung cancer cells. Furthermore, a strong negative correlation between miR-1301-3p and PTRF mRNA was identified in clinical samples. In summary, the present data highlight the involvement of miR-1301-3p in the proliferation and migration of lung cancer cells, indicating that miR-1301-3p may be a promising biomarker for lung cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。