LGK974 suppresses the formation of deep vein thrombosis in mice with sepsis

LGK974 抑制脓毒症小鼠深静脉血栓的形成

阅读:9
作者:Zhishu Li, Xiaoxi Shan, Guolin Yang, Lixia Dong

Background

Sepsis is a disorder characterized by host inflammation and is caused by systemic infection. The inflammatory cytokine storm

Conclusions

LGK974 protects against DVT formation in sepsis mice by inhibiting the activation of the Wnt/β-catenin signal and down-regulating the production of proinflammatory cytokines, PAI-1, and adhesion molecules. LGK974 may be a new candidate for the treatment of sepsis complicated with DVT.

Methods

In this study, a cecal ligation and puncture (CLP)-induced sepsis model and DVT mouse model were constructed by inferior vena cava ligation. The levels of serum inflammatory factors and adhesion molecules were measured in each group, and the thrombus weight and size, hematoxylin-eosin staining, collagen fiber tissue, and transcriptome of the venous wall were analyzed. The activation of the Wnt/β-catenin signal was evaluated by quantitative real-time polymerase chain reaction, Western blotting, ELISA, and immunohistochemical and immunofluorescence methods.

Results

Sepsis significantly promoted the formation of venous wall collagen fibers and DVT. In addition, Porcn significantly upregulated and activated the Wnt/β-catenin signaling pathway in sepsis mouse models with DVT. In contrast, the Wnt signaling inhibitor LGK974 was found to improve the survival rate, decrease thrombosis, and inhibit the expression of inflammation and adhesion molecules in sepsis mice with DVT. Therefore, activation of the Wnt/β-catenin signal may promote the formation of DVT in sepsis mice. Conclusions: LGK974 protects against DVT formation in sepsis mice by inhibiting the activation of the Wnt/β-catenin signal and down-regulating the production of proinflammatory cytokines, PAI-1, and adhesion molecules. LGK974 may be a new candidate for the treatment of sepsis complicated with DVT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。