Aims
We aimed to determine whether a mixture of POPs reflecting the profile found in FF influences mouse GCs or oocyte function and viability.
Conclusions
Thus, a mixture of POPs that are typically present in human FF has detrimental effects on ovarian function: it reduces the viability of GCs, and increases the oocyte concentrations of ROS. Implications: These results indicate that chronic exposure to POPs adversely affects female reproductive health.
Methods
A mixture of POPs, comprising perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene, was used. In addition to using the exact concentration of POPs previously measured in human FF, we tested two other mixtures, one with10-fold lower and another with 10-fold higher concentrations of each POP. Key
Results
Steroidogenesis was disrupted in GCs by the POP mixture, as demonstrated by lower oestradiol and progesterone secretion and greater lipid droplet accumulation. Furthermore, the POP mixture reduced GC viability and increased apoptosis, assessed using caspase-3 activity. The POP mixture significantly increased the number of oocytes that successfully progressed to the second meiotic metaphase and the oocyte reactive oxygen species (ROS) concentration. Conclusions: Thus, a mixture of POPs that are typically present in human FF has detrimental effects on ovarian function: it reduces the viability of GCs, and increases the oocyte concentrations of ROS. Implications: These results indicate that chronic exposure to POPs adversely affects female reproductive health.
