Intrinsic physiology of identified neurons in the prepositus hypoglossi and medial vestibular nuclei

舌下核和前庭内侧核中已识别神经元的内在生理学

阅读:6
作者:Kristine E Kolkman, Setareh H Moghadam, Sascha du Lac

Abstract

Signal processing in the vestibular system is influenced by the intrinsic physiological properties of neurons that differ in neurotransmitters and circuit connections. Do membrane and firing properties differ across functionally distinct cell types? This study examines the intrinsic physiology of neurons in the medial vestibular nucleus (MVN) and nucleus prepositus hypoglossi (NPH) which express different neurotransmitters and have distinct axonal projections. NPH neurons expressing fluorescent proteins in glutamatergic, glycinergic, or GABAergic neurons were targeted for whole-cell patch recordings in brainstem slices obtained from transgenic mouse lines (YFP-16, GlyT2, and GIN). Recordings from MVN neurons projecting to the spinal cord, reticular formation, or oculomotor nucleus were obtained by targeting fluorescent neurons retrogradely labeled from tracer injections. Intrinsic physiological properties of identified neurons exhibited continuous variations but tended to differ between functionally defined cell types. Within the NPH, YFP-16 neurons had the narrowest action potentials and highest evoked firing rates and expressed high levels of Kv3.3 proteins, which speed repolarization. MVN neurons projecting to the spinal cord and oculomotor nucleus had similar action potential waveforms, but oculomotor-projecting neurons had higher intrinsic gains than those projecting to the spinal cord. These results indicate that intrinsic membrane properties are differentially tuned in MVN and NPH neurons subserving different functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。