NTPDase1 and -2 are expressed by distinct cellular compartments in the mouse colon and differentially impact colonic physiology and function after DSS colitis

NTPDase1 和 -2 由小鼠结肠中的不同细胞区室表达,并对 DSS 结肠炎后的结肠生理和功能产生不同的影响

阅读:5
作者:Vladimir Grubišić, Alberto L Perez-Medina, David E Fried, Jean Sévigny, Simon C Robson, James J Galligan, Brian D Gulbransen

Abstract

ATP is both an important mediator of physiological gut functions such as motility and epithelial function, and a key danger signal that mediates cell death and tissue damage. The actions of extracellular ATP are regulated through the catalytic functions extracellular nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3, and -8, which ultimately generate nucleosides. Ectonucleotidases have distinct cellular associations, but the specific locations and functional roles of individual NTPDases in the intestine are still poorly understood. Here, we tested the hypothesis that differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in gut physiology and disease. We studied Entpd1 and Entpd2 null mice in health and following colitis driven by 2% dextran sulfate sodium (DSS) administration using functional readouts of gut motility, epithelial barrier function, and neuromuscular communication. NTPDase1 is expressed by immune cells, and the ablation of Entpd1 altered glial numbers in the myenteric plexus. NTPDase2 is expressed by enteric glia, and the ablation of Entpd2 altered myenteric neuron numbers. Mice lacking either NTPDase1 or -2 exhibited decreased inhibitory neuromuscular transmission and altered components of inhibitory junction potentials. Ablation of Entpd2 increased gut permeability following inflammation. In conclusion, the location- and context-dependent extracellular nucleotide phosphohydrolysis by NTPDase1 and -2 substantially impacts gut function in health and disease.NEW & NOTEWORTHY Purines are important mediators of gastrointestinal physiology and pathophysiology. Nucleoside triphosphate diphosphohydrolases (NTPDases) regulate extracellular purines, but the roles of specific NTPDases in gut functions are poorly understood. Here, we used Entpd1- and Entpd2-deficient mice to show that the differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in barrier function, gut motility, and neuromuscular communication in health and disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。