Taxifolin attenuates inflammation via suppressing MAPK signal pathway in vitro and in silico analysis

紫杉叶素通过体外和计算机模拟分析抑制 MAPK 信号通路减轻炎症

阅读:5
作者:Xingyan Zhang, Xiaoyan Lian, Huling Li, Wenjing Zhao, Xin Li, Fujun Zhou, Yutong Zhou, Tao Cui, Yuli Wang, Changxiao Liu

Conclusion

This finding demonstrated that taxifolin improved the inflammatory responses that partly involved in the phosphorylation expression level of MAPK signal pathway in RAW264.7 cells exposed to acute stress.

Methods

Levels of interleukin (IL)-6, IL-1β and intracellular reactive oxygen species (ROS) were assessed in different time after the treatment of taxifolin in RAW264.7 cells induced by lipopolysaccharide (LPS). Subsequently, the mRNA and protein levels of inducible nitric oxide synthase (iNOS), vascular endothelial growth factor (VEGF), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and the phosphorylation expression levels of the MAPK signal pathway were also evaluated. A silico analysis was used to explain the binding situation for the investigation of taxifolin and MAPK signal pathway. And then MAPK inhibitors were used to reveal the expression level of iNOS, VEGF, COX-2 and TNF-α in RAW264.7 cells.

Objective

Taxifolin is a natural flavonoid compound that can be isolated from onions, grapes, oranges and grapefruit. It also acts as a medicine food homology with extraordinary antioxidant and anti-inflammatory activity. This study aims to explain the protective effects and potential mechanisms of taxifolin against inflammatory reaction.

Results

It was demonstrated that cell inflammatory damage induced by LPS was significantly alleviated after the treatment of taxifolin. Then, the mRNA and protein levels of iNOS, VEGF, COX-2 and TNF-α were reduced and the phosphorylation expression levels of the MAPK signal pathway were down-regulated remarkably as well. In silico analysis, taxifolin could form a relatively stable combination with MAPK signal pathway. MAPK inhibitors showed increasing or decreasing effect in the mRNA levels of iNOS, VEGF, COX-2 and TNF-α, which suggesting that taxifolin down-regulated iNOS, VEGF, COX-2 and TNF-α expressions were not entirely through the MAPK pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。