EphrinB2-RhoA upregulation attenuates sympathetic hyperinnervation and decreases the incidence of ventricular arrhythmia after myocardial infarction

EphrinB2-RhoA 上调减弱交感神经过度支配并降低心肌梗死后室性心律失常的发生率

阅读:6
作者:Ye Wang, Chengying Shao, Lei Qi, Jiayu Tan, Yuepeng Zhao, Mei Xue, Xiaolu Li, Wenjuan Cheng, Xinran Li, Jie Yin, Yugen Shi, Yu Wang, Kang Wang, Hesheng Hu, Suhua Yan

Background

Cardiac sympathetic hyperinnervation after myocardial infarction (MI) is associated with a high incidence of lethal arrhythmia. Erythropoietin-producing hepatoma interactor B2 (EphrinB2), a diffusible axonal chemorepellent that can induce growth cone collapse and axon repulsion of several neuronal populations, is crucial in neurodevelopment during disease development and progression. However, whether EphrinB2 could inhibit cardiac sympathetic hyperinnervation after MI remains unclear.

Conclusions

Overexpression of EphrinB2 may ameliorate MI-induced sympathetic hyperinnervation and further reduce the incidence of VAs, at least in part by activating RhoA-mediated axonal retraction.

Results

A rat model of MI was developed by left anterior descending coronary artery ligation. EphrinB2 expression was markedly increased in the infarcted border at 3 days after MI. Downregulation of EphrinB2 by intramyocardial injection of lentivirus carrying EphrinB2-shRNA significantly increased sympathetic hyperinnervation along with downregulated RhoA expression. In contrast, injection of EphrinB2-overexpressing lentivirus markedly upregulated EphrinB2, concomitant with inhibition of sympathetic sprouting and upregulated RhoA expression, accompanied by decreased incidence of ventricular arrhythmias (VAs). However, co-administering EphrinB2-overexpressing lentivirus and Fasudil (Rho kinase inhibitor) nearly abolished the inhibition of nerve sprouting effect. Additionally, EphrinB2 expression did not affect nerve growth factor level in the infarcted heart. Conclusions: Overexpression of EphrinB2 may ameliorate MI-induced sympathetic hyperinnervation and further reduce the incidence of VAs, at least in part by activating RhoA-mediated axonal retraction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。