Effectiveness of biosurfactant for the removal of trihalomethanes by biotrickling filter

生物表面活性剂对生物滴滤塔去除三卤甲烷的效果

阅读:7
作者:Bineyam Mezgebe, George Sorial, David Wendell, E Sahle-Demessie

Abstract

In this study, the biodegradation of a mixture of two trihalomethane (THM) compounds, chloroform (CF) and dichlorobromomethane (DCBM), was evaluated using two laboratory-scale biotrickling filters (BTFs). The two BTFs, hereby designated as "BTF-A" and "BTF-B," were run parallel and used ethanol as co-metabolite at different loading rates (LRs), and a lipopeptide-type biosurfactant that was generated by the gram-positive bacteria, Surfactin, respectively. The results using BTF-A showed that adding ethanol at a higher rate of 4.59 g/(m3 h) resulted in removal efficiencies of 85% and 87% for CF and DCBM, respectively. Conversely, for the same LR, the use of Surfactin without ethanol (BTF-B) showed comparable removal efficiencies of 85% and 80% for CF and DCBM, respectively. The maximum rate constant for CF and DCBM for the BTF-A was 0.00203 s-1 and 0.0022 s-1, respectively. For the same THMs LR, similar reaction rate constants resulted for the BTF-B. Further studies were conducted to investigate and understand the microbial diversity within both BTFs. The result indicated that for BTF with co-metabolite, Fusarium sp. was the most dominant fungi over 98% followed by F. Solani with less than 2%. F. oxysporum and Fusarium sp. were instead the dominant fungi for the BTF with Surfactin. Before introducing the Surfactin into the BTF, the batch experiment was conducted to evaluate the effectiveness of synthetic surfactant as compared to a biosurfactant (Surfactin). In this regard, vials with Surfactin showed better performance than vials with Tomadol 25-7 (synthetic surfactant).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。