Delivery of Dissociated Islets Cells within Microporous Annealed Particle Scaffold to Treat Type 1 Diabetes

在微孔退火粒子支架内输送分离的胰岛细胞以治疗 1 型糖尿病

阅读:5
作者:Colleen A Roosa, Mingyang Ma, Preeti Chhabra, Kenneth Brayman, Donald Griffin

Abstract

Type 1 diabetes (T1D) is caused by the autoimmune loss of insulin-producing beta cells in the pancreas. The only clinical approach to patient management of blood glucose that doesn't require exogenous insulin is pancreas or islet transplantation. Unfortunately, donor islets are scarce and there is substantial islet loss immediately after transplantation due, in part, to the local inflammatory response. The delivery of stem cell-derived beta cells (e.g., from induced pluripotent stem cells) and dissociated islet cells hold promise as a treatment for T1D; however, these cells typically require re-aggregation in vitro prior to implantation. Microporous scaffolds have shown high potential to serve as a vehicle for organization, survival, and function of insulin-producing cells. In this study, we investigated the use of microporous annealed particle (MAP) scaffold for delivery of enzymatically dissociated islet cells, a model beta cell source, within the scaffold's interconnected pores. We found that MAP-based cell delivery enables survival and function of dissociated islets cells both in vitro and in an in vivo mouse model of T1D.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。