Aim of the study
To elucidate the ameliorative effect of HGD on DLI and explore its material basis and potential hepatoprotective mechanism. Materials and
Conclusions
HGD could ameliorate diabetic liver injury by modulating the PI3K/AKT/Nrf2 signaling pathway and urinary metabolic profile.
Methods
A diabetic mice model was induced by feeding a high-fat diet and injecting intraperitoneally with streptozotocin (40 mg kg-1) for five days. After the animals were in confirmed diabetic condition, they were given HGD (3 or 12 g kg-1, i. g.) for 14 weeks. The effectiveness of HGD in treating DLI mice was evaluated by monitoring blood glucose and blood lipid levels, liver function, and pathological conditions. Furthermore, UPLC-MS/MS was used to identify the chemical component profile in HGD and absorption components in HGD-treated plasma. Network pharmacology and molecular docking were performed to predict the potential pathway of HGD intervention in DLI. Then, the
Results
HGD exerted therapeutic potential against the disorders of glucose metabolism and lipid metabolism, liver dysfunction, liver steatosis, and fibrosis in a DLI model mice induced by HFD/STZ. A total of 108 chemical components in HGD and 18 absorption components in HGD-treated plasma were preliminarily identified. Network pharmacology and molecular docking results of the absorbed components in plasma indicated PI3K/AKT as a potential pathway for HGD to intervene in DLI mice. Further experiments verified that HGD markedly reduced liver oxidative stress in DLI mice by modulating the PI3K/AKT/Nrf2 signaling pathway. Moreover, 19 differential metabolites between normal and DLI mice were detected in urine, and seven metabolites could be significantly modulated back by HGD. Conclusions: HGD could ameliorate diabetic liver injury by modulating the PI3K/AKT/Nrf2 signaling pathway and urinary metabolic profile.
