Effect of Inactivation of Mst1 and Mst2 in the Mouse Adrenal Cortex

Mst1 和 Mst2 失活对小鼠肾上腺皮质的影响

阅读:7
作者:Nour Abou Nader, Étienne Blais, Guillaume St-Jean, Derek Boerboom, Gustavo Zamberlam, Alexandre Boyer

Abstract

Recent conditional knockout of core components of the Hippo signaling pathway in the adrenal gland of mice has demonstrated that this pathway must be tightly regulated to ensure proper development and maintenance of the adrenal cortex. We report herein that the most upstream kinases of the pathway, the mammalian STE20-like protein kinases 1 and 2 (MST1and MST2, respectively), are expressed in the mouse adrenal cortex with MST2 expression being restricted to the zona glomerulosa (zG). To further explore the role of Hippo signaling in adrenocortical cells, we conditionally deleted Mst1/2 in steroidogenic cells using an Nr5a1-cre strain (Mst1 flox/flox ; Mst2 flox/flox ; Nr5a1-cre). Our results show that the loss of MST1/2 leads to the premature and progressive accumulation of subcapsular GATA4+, WT1+ adrenal gonadal primordium (AGP)-like progenitor cells starting at 2 months of age without affecting aldosterone and corticosterone secretion. To help us understand this phenotype, microarray analyses were performed on adrenal glands from 2-month-old mutant and control mice. Gene expression analyses revealed that loss of Mst1/2 leads to the overexpression of known downstream target genes (Ajuba, Aqp1, Fn1, Ibsp, Igf1, Igfbp2, Mmp2, Thbs1) of the main effector of Hippo signaling, YAP; and underexpression of genes (Agtr1b, Ecgr4, Hsd3b6, Nr0b1, Tesc, Vsnl1) that are normally specifically expressed in the zG or overexpressed in the zG compared to the zona fasciculata (zF). Together, these results suggest that MST1/2 regulates Hippo signaling activity in the adrenal cortex and that these two kinases are also involved in the fine tuning of zG cell function or differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。