Inhibition of MEK confers hypersensitivity to X-radiation in the context of BRAF mutation in a model of childhood astrocytoma

在儿童星形细胞瘤模型中,抑制 MEK 会导致 BRAF 突变导致对 X 射线的超敏反应

阅读:6
作者:Adam Studebaker, Kathryn Bondra, Star Seum, Changxian Shen, Doris A Phelps, Christopher Chronowski, Justin Leasure, Paul D Smith, Raushan T Kurmasheva, Xiaokui Mo, Maryam Fouladi, Peter J Houghton

Conclusions

Selumetinib suppressed TORC1 signaling in the context of BRAF mutation. Selumetinib caused a rapid downregulation of FANCD2 and markedly potentiated the effect of XRT. These data suggest the possibility of potentiating the effect of XRT selectively in tumor cells by MEK inhibition in the context of mutant BRAF or maintaining tumor control at lower doses of XRT that would decrease long-term sequelae.

Purpose

Curative therapy for childhood glioma presents challenges when complete resection is not possible. Patients with recurrent low-grade tumors or anaplastic astrocytoma may receive radiation treatment; however, the long-term sequellae from radiation treatment can be severe. As many childhood gliomas are associated with activation of BRAF, we have explored the combination of ionizing radiation with MEK inhibition in a model of BRAF-mutant anaplastic astrocytoma. Experimental design: The regulation of TORC1 signaling by BRAF was examined in BT-40 (BRAF mutant) and BT-35 (BRAF wild type) xenografts, in a cell line derived from the BT-40 xenograft and two adult BRAF mutant glioblastoma cell lines. The effect of MEK inhibition (selumetinib), XRT (total dose 10 Gy as 2 Gy daily fractions), or the combination of selumetinib and XRT was evaluated in subcutaneous BT-40 xenografts.

Results

Inhibition of MEK signaling by selumetinib suppressed TORC1 signaling only in the context of the BRAF-mutant both in vitro and in vivo. Inhibition of MEK signaling in BT-40 cells or in xenografts lead to a complete suppression of FANCD2 and conferred hypersensitivity to XRT in BT-40 xenografts without increasing local skin toxicity. Conclusions: Selumetinib suppressed TORC1 signaling in the context of BRAF mutation. Selumetinib caused a rapid downregulation of FANCD2 and markedly potentiated the effect of XRT. These data suggest the possibility of potentiating the effect of XRT selectively in tumor cells by MEK inhibition in the context of mutant BRAF or maintaining tumor control at lower doses of XRT that would decrease long-term sequelae.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。