Identification by genetic algorithm optimized back propagation artificial neural network and validation of a four-gene signature for diagnosis and prognosis of pancreatic cancer

通过遗传算法优化的反向传播人工神经网络识别并验证用于胰腺癌诊断和预后的四基因特征

阅读:5
作者:Zhenchong Li, Zuyi Ma, Qi Zhou, Shujie Wang, Qian Yan, Hongkai Zhuang, Zixuan Zhou, Chunsheng Liu, Zhongshi Wu, Jinglin Zhao, Shanzhou Huang, Chuanzhao Zhang, Baohua Hou

Background

Although some improvements in the management of pancreatic cancer (PC) have been made, no major breakthroughs in terms of biomarker discovery or effective treatment have emerged. Here, we applied artificial intelligence (AI)-based

Conclusions

Using Limma Package and GA-ANN, we developed and validated a diagnostic and prognostic gene signature that yielded excellent predictive capacity for PC patients' survival. In vitro studies were further conducted to verify the functions of SLC6A14 and SPOCK1 in PC progression.

Methods

Multiple bioinformatics methods, including Limma Package, were performed to identify differentially expressed genes (DEGs) in PC. A Back Propagation (BP) model was constructed, followed by Genetic Algorithm (GA) filtering and verification of its prognosis capacity in the TCGA cohort. Furthermore, we validated the protein expression of the selected DEGs in 92 clinical PC tissues using immunohistochemistry. Finally, intro studies were performed to assess the function of SLC6A14 and SPOCK1 on pancreatic ductal adenocarcinoma (PDAC) cells proliferation and apoptosis.

Results

Four candidate genes (LCN2, SLC6A14, SPOCK1, and VCAN) were selected to establish a four-gene signature for PC. The gene signature was validated in the TCGA PC cohort, and found to show satisfactory discrimination and prognostic power. Areas under the curve (AUC) values of overall survival were both greater than 0.60 in the TCGA training cohort, test cohort, and the entire cohort. Kaplan-Meier analyses showed that high-risk group had a significantly shorter overall survival and disease-free survival than the low-risk group. Further, the elevated expression of SLC6A14 and SPOCK1 in PC tissues was validated in the TCGA + GETx datasets and 92 clinical PC tissues, and was significantly associated with poor survival in PC. In PDAC cell line, SLC6A14 or SPOCK1 knockdown inhibited cells proliferation, migration and promoted cells apoptosis. Conclusions: Using Limma Package and GA-ANN, we developed and validated a diagnostic and prognostic gene signature that yielded excellent predictive capacity for PC patients' survival. In vitro studies were further conducted to verify the functions of SLC6A14 and SPOCK1 in PC progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。