Propofol induces impairment of mitochondrial biogenesis through inhibiting the expression of peroxisome proliferator-activated receptor-γ coactivator-1α

丙泊酚通过抑制过氧化物酶体增殖激活受体-γ辅激活因子-1α的表达导致线粒体生物合成受损

阅读:4
作者:Jing Qin, Yizhen Li, Kai Wang

Abstract

Propofol is a commonly used general anesthetic in patient care. Recent studies have shown that propofol has neurological side effects especially in young children, which raises a concern regarding the safety of its use. We explored the effects of the molecular mechanism of propofol on neuronal mitochondrial function in SH-SY5Y cells. Our results demonstrate that clinically relevant doses of propofol reduce the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in a dose- and time-dependent manner. At a concentration of 2%, propofol suppresses the mitochondrial regulator nuclear respiratory factor 1 and mitochondrial transcription factor A and impairs neuronal mitochondrial biogenesis. These impairments involve reduction of mitochondrial mass and reduction of the ratio of mitochondrial to nuclear DNA as well as reduction of cytochrome C oxidase activity. Propofol treatment reduces intracellular adenosine triphosphate (ATP) production, the mitochondrial respiratory rate, and increases mitochondrial reactive oxygen species production, implying that it disturbs neuronal mitochondrial function. Overexpression of PGC-1α rescued propofol-induced reduced mitochondrial mass, ATP production, and respiratory rate, indicating that PGC-1α is the mediator of the effect of propofol on mitochondrial function. Finally, we demonstrate that propofol suppresses PGC-1α by inhibiting cAMP-response element binding protein (CREB) activation and promoting PKA RI expression, and the addition of cyclic adenosine monophosphate rescues propofol-mediated reduced PGC-1α. In conclusion, PGC-1α is the central mediator of propofol-induced impairment of mitochondrial biogenesis and neuronal mitochondrial dysfunction. Our study demonstrates the molecular mechanism behind propofol-induced neurotoxicity and provides valuable information regarding its side effects in clinical practice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。