miR-124a enhances therapeutic effects of bone marrow stromal cells transplant on diabetic nephropathy-related epithelial-to-mesenchymal transition and fibrosis

miR-124a 增强骨髓基质细胞移植对糖尿病肾病相关上皮间质转化和纤维化的治疗作用

阅读:4
作者:Xiaojun Cai, Lei Wang, Xuling Wang, Fengyan Hou

Background

Epithelial-to-mesenchymal transition (EMT) has been gradually considered as one of the major pathways that causes the production of interstitial myofibroblasts in diseased kidneys. Materials and

Conclusion

The study demonstrated the pivotal effect of miR-124a on BMSC therapy for DN rats via mitigating EMT and fibrosis. Our results provide a novel insight into how therapeutic effects of BMSCs can be improved at the posttranscriptional level.

Methods

The study was done to investigate the effect of a bone marrow stromal cell (BMSCs) transplant on rat podocytes and diabetic nephropathy (DN) rats in high-glucose concentration, and to explore the effect of miR-124a on BMSC therapy. High glucose-injured podocytes and streptozotocin-induced DN rats have been respectively used as injury models in in vitro and in vivo studies. Podocyte viability was measured using the Cell Counting Kit-8 assay. Renal pathological examination was observed by HE staining and Masson staining. The messenger RNA and protein levels were determined via real-time polymerase chain reaction and Western blotting, respectively.

Results

By mediating the activation of caveolin-1 (cav-1) and β-catenin and affecting the expression levels of EMT biomarkers including p-cadherin, synaptopodin, fibroblast-specific protein-1, α-smooth muscle actin and snail, our in vitro study confirmed that miR-124a played a significant role in the treatment of high glucose-induced podocyte injury by BMSCs. The therapeutic effects of the BMSC transplant on DN rats were also proved to be further enhanced by miR-124a overexpression in BMSCs, and such a phenomenon was accompanied by the improvement of renal fibrosis and mitigation of DN-related kidney impairment. Regulation of fibronectin, collagen1, and EMT-related proteins was closely implicated with the mechanism, and the activation of cav-1 and β-catenin was also possibly involved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。