The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma

H3.3K27M 致癌组蛋白影响复制应激结果并引发儿童胶质瘤基因组不稳定性

阅读:5
作者:Irena Bočkaj, Tosca E I Martini, Eduardo S de Camargo Magalhães, Petra L Bakker, Tiny G J Meeuwsen-de Boer, Inna Armandari, Saskia L Meuleman, Marin T Mondria, Colin Stok, Yannick P Kok, Bjorn Bakker, René Wardenaar, Jonas Seiler, Mathilde J C Broekhuis, Hilda van den Bos, Diana C J Spierings, Femke

Abstract

While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。