Cytotoxicity and induced apoptosis of a new bioceramic cement containing simvastatin on stem cells from human exfoliated deciduous teeth

含辛伐他汀的新型生物陶瓷水泥对人脱落乳牙干细胞的细胞毒性及诱导细胞凋亡

阅读:6
作者:Iman Parisay, Ali Qeidari, Ehsan Sabouri, Fatemeh Khorakian, Hosein Bagheri

Background

This study aims to compare cytotoxicity and induced apoptosis of a new bioceramic cement containing different concentrations of simvastatin on stem cells from human exfoliated deciduous teeth (SHED). Materials and

Conclusion

After 7 days, the viability of the SHED in the presence of a new bioceramic cement containing 0.1 and 0.01 μM simvastatin was not compromised. Moreover, this cement showed superior results than MTA and provided an environment for cell proliferation. This finding appears to be due to the pharmacological effects of low concentrations of simvastatin.

Methods

This research was an in vitro study. To evaluate the cytotoxicity and induced apoptosis of the bioceramic cement containing different concentrations of simvastatin, the SHED were exposed to the cement during 1, 3, and 7 days. Pure bioceramic cement and pure simvastatin with concentrations of 1, 0.1, and 0.01 μM were also tested to evaluate the possible synergic effect. Mineral trioxide aggregate (MTA) as the gold standard of pulp dressing materials was compared. MTT assay and Annexin V assay were used to evaluate cytotoxicity and induced apoptosis, respectively. The data were analyzed using ANOVA and Tukey post hoc tests at the significance level of 0.05.

Results

During 7 days, MTA, bioceramic cement, simvastatin 0.1 and 0.01 μM, and bioceramic cement containing 0.1 and 0.01 μM simvastatin increased (P < 0.05) and simvastatin with concentration of 1 μM decreased the cell viability (P < 0.05). Except for MTA and bioceramic cement containing 0.1 and 0.01 μM simvastatin, all other compounds induced apoptosis within 7 days (P < 0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。