Modified Suberoylanilide Hydroxamic Acid Reduced Drug-Associated Immune Cell Death and Organ Damage under Lipopolysaccharide Inflammatory Challenge

改性辛二酰苯胺异羟肟酸可减少脂多糖炎症刺激下药物相关的免疫细胞死亡和器官损伤

阅读:5
作者:Nhu Truong, Christopher C Goodis, Andrea L Cottingham, Jacob R Shaw, Steven Fletcher, Ryan M Pearson

Abstract

Histone deacetylase inhibitors (HDACi) induce potent anti-inflammatory responses when used to treat inflammatory diseases. Suberoylanilide hydroxamic acid (SAHA), a pan-HDACi, decreases pro-inflammatory cytokine levels and attenuates cytokine storm in sepsis; however, its toxicity profile toward immune cells has limited its use as a sepsis therapeutic. Here, we developed a modification to SAHA by para-hydroxymethylating the capping group to generate SAHA-OH. We discovered that SAHA-OH provides a favorable improvement to the toxicity profile compared to SAHA. SAHA-OH significantly reduced primary macrophage apoptosis and splenic B cell death as well as mitigated organ damage using a lipopolysaccharide (LPS)-induced endotoxemia mouse model. Furthermore, SAHA-OH retained anti-inflammatory responses similar to SAHA as measured by reductions in LPS-induced proinflammatory cytokine secretions in vitro and in vivo. These effects were attributed to a decreased selectivity of HDAC1, 2, 3, 8 and an increased selectivity for HDAC6 for SAHA-OH as determined by IC50 values. Our results support the potential for SAHA-OH to modulate acute proinflammatory responses while mitigating SAHA-associated drug toxicity for use in the treatment of inflammation-associated diseases and conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。