Inhibitory Effect of a Human MicroRNA, miR-6133-5p, on the Fibrotic Activity of Hepatic Stellate Cells in Culture

人类微小RNA miR-6133-5p对培养肝星状细胞纤维化活性的抑制作用

阅读:7
作者:Susumu Hamada-Tsutsumi, Masaya Onishi, Kentaro Matsuura, Masanori Isogawa, Keigo Kawashima, Yusuke Sato, Yasuhito Tanaka

Background

We recently identified 39 human microRNAs, which effectively suppress hepatitis B virus (HBV) replication in hepatocytes. Chronic HBV infection often

Conclusion

miR-6133-5p has a strong anti-fibrotic effect, mediated by inactivation of TGFBR2, Akt, and JNK.

Methods

The hepatic stellate cell line LX-2 was transfected with an miR-6133-5p mimic and subsequently treated with Transforming growth factor (TGF)-β. The mRNA and protein products of the COL1A1 gene, encoding collagen, and the ACTA2 gene, an activation marker of hepatic stellate cells, were quantified.

Results

The expression of COL1A1 and ACTA2 was markedly reduced in LX-2 cells treated with miR-6133-5p. Interestingly, phosphorylation of c-Jun N-terminal kinase (JNK) was also significantly decreased by miR-6133-5p treatment. The expression of several predicted target genes of miR-6133-5p, including TGFBR2 (which encodes Transforming Growth Factor Beta Receptor 2) and FGFR1 (which encodes Fibroblast Growth Factor Receptor 1), was also reduced in miR-6133-5p-treated cells. The knockdown of TGFBR2 by the corresponding small interfering RNA greatly suppressed the expression of COL1A1 and ACTA2. Treatment with the JNK inhibitor, SP600125, also suppressed COL1A1 and ACTA2 expression, indicating that TGFBR2 and JNK mediate the anti-fibrotic effect of miR-6133-5p. The downregulation of FGFR1 may result in a decrease of phosphorylated Akt, ERK (extracellular signal-regulated kinase), and JNK.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。