Neuroprotective Effects of Curcumin against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury in Cultured Primary Rat Astrocyte by Improving Mitochondrial Function and Regulating the ERK Signaling Pathway

姜黄素通过改善线粒体功能和调节 ERK 信号通路对培养原代大鼠星形胶质细胞氧-糖剥夺/复氧诱导损伤的神经保护作用

阅读:4
作者:Haojie Chen, Guoke Tang, Jiangming Yu, Ronghua Yu

Conclusions

Curcumin protected against OGD/R-induced injury in rat astrocyte primary cells through improving mitochondrial function and regulating the ERK signaling pathway.

Methods

After screening for effective doses, the cultured rat astrocyte primary cells were divided into three groups: control, OGD/R, and OGD/R + curcumin (10 μM, 20 μM, and 40 μM). Cell viability was detected using CCK8 assays. The level of malondialdehyde and superoxide dismutase activity was determined using commercial kits. The endothelial nitric oxide synthase and adenosine triphosphate concentrations were determined by enzyme-linked immunosorbent assay. The mRNA levels of the inflammatory indexes interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-1β were evaluated by quantitative reverse-transcription polymerase chain reaction. Annexin V-fluorescein isothiocyanate/propidium iodide was used to detect apoptosis. JC-1 was used to assess the mitochondrial membrane potential. The protein expression of apoptosis-related proteins (B-cell lymphoma-2 (Bcl-2), BCL-2-associated X (Bax), and cleaved caspase 3), mitochondria-related proteins (dynamin-related protein 1 (DRP1), phosphorylated DRP1 (p-DRP1), and mitofusin 2), and essential proteins of the extracellular signal-regulated kinase (ERK) signaling pathway (ERK1/2, p-ERK1/2) were analyzed by western blot.

Results

Our data indicated that curcumin reversed OGD/R-induced cell viability loss, oxidative stress, inflammatory cytokine production, and cell apoptosis in a dose-dependent manner. Furthermore, curcumin attenuated OGD/R-induced mitochondrial dysfunction and ERK1/2 phosphorylation in a dose-dependent manner. Conclusions: Curcumin protected against OGD/R-induced injury in rat astrocyte primary cells through improving mitochondrial function and regulating the ERK signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。