Conclusion
PF rescued neurological deficit and underlying mechanisms were inhibition of neurological apoptosis and inflammation by nAChRs.
Methods
We established an animal model of cerebral infarct by occlusion of the middle cerebral artery for 15 min, followed by reperfusion, and PF was administered 24 hr later (20 mg/kg, intraperitoneally for 6 days) after reperfusion.
Results
Treatment with PF reduced the neurological deficit score, improved motor function, decreased cell counts of nicotinic acetylcholine receptor (nAChR) α4β2 immunoreactive cells, and increased cell counts of nAChR α7. Furthermore, PF administration suppressed neuronal apoptosis and promoted neurogenesis.
