A Viable and sustainable flat- membrane plate-and-frame module for spent acid regeneration and metal ion recovery

用于废酸再生和金属离子回收的可行且可持续的平板膜板框模块

阅读:6
作者:Shazia Perveen, Syed Ghazanfar Hussain, Muzamil Jalil Ahmed, Ruba Khawar, Taha Bin Siraj, Maryam Saleem

Abstract

This study provides techno-economical insights for acid regeneration and metal recovery from spent acidic wastewater by a diffusion dialysis plate-and-frame module using Quaternized Polyepichlorohydrin - Polyacrylonitrile (QPECH-PAN) membranes. Quaternized Polyepichlorohydrin (QPECH) membranes were synthesized using 1,4-diazobicyclo[2.2.2]octane (DABCO) and blended with polyacrylonitrile (PAN). Said membranes were analyzed in terms of their mechanical, physicochemical, and electrochemical characteristics, providing significant results comparable to the commercial membranes (IEC: 1.76 mmol/g, SD: 60.91%, Permselectivity: 79.5 ± 0.31%, and transport no. t(-): 0.5). Mechanical characterization reveals that the QPECH-PAN membranes possess comparable mechanical strengths (tensile strength: 329.56 MPa). Further, sheet resistivity (6.11 Ω cm2) and conductivity (0.16 S/cm2) reveal the relative conductive nature of these membranes. Percent acid recovery and metal ion recovery ratios were found to be 72% and 48% respectively, and separation factors were 126.8 and 84.57 respectively. The QPECH-PAN membrane's techno-economic feasibility was also analyzed within the context of a textile industry processing up to 5500 kg/d of acidic wastewater. It indicates a potential cost saving of US $0.53 million on H2SO4 and NaOH, as well as an OPEX saving of 40.91% against a semi-continuous acid neutralizer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。