Reactive Oxygen Species Damage Bovine Endometrial Epithelial Cells via the Cytochrome C-mPTP Pathway

活性氧通过细胞色素C-mPTP通路损伤牛子宫内膜上皮细胞

阅读:8
作者:Pengjie Song, Mingkun Sun, Chen Liu, Jianguo Liu, Pengfei Lin, Huatao Chen, Dong Zhou, Keqiong Tang, Aihua Wang, Yaping Jin

Abstract

After parturition, bovine endometrial epithelial cells (BEECs) undergo serious inflammation and imbalance between oxidation and antioxidation, which is widely acknowledged as a primary contributor to the development of endometritis in dairy cows. Nevertheless, the mechanism of oxidative stress-mediated inflammation and damage in bovine endometrial epithelial cells remains inadequately defined, particularly the molecular pathways associated with mitochondria-dependent apoptosis. Hence, the present study was designed to explore the mechanism responsible for mitochondrial dysfunction-induced BEEC damage. In vivo, the expressions of proapoptotic protein caspase 3 and cytochrome C were increased significantly in dairy uteri with endometritis. Similarly, the levels of proapoptotic protein caspase 3, BAX, and cytochrome C were markedly increased in H2O2-treated BEECs. Our findings revealed pronounced BEEC damage in dairy cows with endometritis, accompanied by heightened expression of cyto-C and caspase-3 both in vivo and in vitro. The reduction in apoptosis-related protein of BEECs due to oxidant injury was notably mitigated following N-acetyl-L-cysteine (NAC) treatment. Furthermore, mitochondrial vacuolation was significantly alleviated, and mitochondrial membrane potential returned to normal levels after the removal of ROS. Excessive ROS may be the main cause of mitochondrial dysfunction. Mitochondrial permeability transition pore (mPTP) blockade by cyclophilin D (CypD) knockdown with CSA significantly blocked the flow of cytochrome C (cyto-C) and Ca2+ to the cytoplasm from the mitochondria. Our results indicate that elevated ROS and persistent opening of the mPTP are the main causes of oxidative damage in BEECs. Collectively our results reveal a new mechanism involving ROS-mPTP signaling in oxidative damage to BEECs, which may be a potential avenue for the clinical treatment of bovine endometritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。