Antitumor Activity of the Xanthonoside XGAc in Triple-Negative Breast, Ovarian and Pancreatic Cancer by Inhibiting DNA Repair

黄原苷 XGAc 通过抑制 DNA 修复对三阴性乳腺癌、卵巢癌和胰腺癌发挥抗肿瘤活性

阅读:8
作者:Juliana Calheiros, Liliana Raimundo, João Morais, Ana Catarina Matos, Sonia Anna Minuzzo, Stefano Indraccolo, Emília Sousa, Marta Correia da Silva, Lucília Saraiva

Abstract

Dysregulation of the DNA damage response may contribute to the sensitization of cancer cells to DNA-targeting agents by impelling cell death. In fact, the inhibition of the DNA repair pathway is considered a promising anticancer therapeutic strategy, particularly in combination with standard-of-care agents. The xanthonoside XGAc was previously described as a potent inhibitor of cancer cell growth. Herein, we explored its antitumor activity against triple-negative breast cancer (TNBC), ovarian cancer and pancreatic ductal adenocarcinoma (PDAC) cells as a single agent and in combination with the poly(ADP-ribose) polymerase inhibitor (PARPi) olaparib. We demonstrated that XGAc inhibited the growth of TNBC, ovarian and PDAC cells by inducing cell cycle arrest and apoptosis. XGAc also induced genotoxicity, inhibiting the expression of DNA repair proteins particularly involved in homologous recombination, including BRCA1, BRCA2 and RAD51. Moreover, it displayed potent synergistic effects with olaparib in TNBC, ovarian cancer and PDAC cells. Importantly, this growth inhibitory activity of XGAc was further reinforced in a TNBC spheroid model and in patient-derived ovarian cancer cells. Also, drug-resistant cancer cells showed no cross-resistance to XGAc. Additionally, the ability of XGAc to prevent cancer cell migration was evidenced in TNBC, ovarian cancer and PDAC cells. Altogether, these results highlight the great potential of acetylated xanthonosides such as XGAc as promising anticancer agents against hard-to-treat cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。