Policosanol alleviates hepatic lipid accumulation by regulating bile acids metabolism in C57BL6/mice through AMPK-FXR-TGR5 cross-talk

甘醇通过 AMPK-FXR-TGR5 串扰调节 C57BL6/小鼠胆汁酸代谢,从而减轻肝脏脂质蓄积

阅读:7
作者:Zhenya Zhai, Kai-Min Niu, Huiping Liu, Chong Lin, Yue Tu, Yichun Liu, Lichuang Cai, Kexian Ouyang, Jianping Liu

Abstract

Policosanol exhibits a lipid accumulation alleviating effect, but the underlying mechanisms remains unclear. Bile acids are a significant factor in regulating cholesterol and lipid metabolism homeostasis in mammals. This study was aimed to elucidate the alleviating effect and underlying mechanisms of policosanol on hepatic lipid accumulation through bile acid (BA) metabolism. Policosanol supplementation significantly reduced hepatic triglycerides (19.29%), cholesterol (30.38%) in high fat diet (HFD) induced obese mice (P < 0.05). Furthermore, compared with the control group, HFD decreased the levels of total BAs (TBAs, 37.67%) and cholic acid (CA, 62.74%) in the serum of mice (P < 0.05). Meanwhile, compared to HFD group, policosanol also increased the level of secondary BAs (SBAs) and muricholic acids (MCAs, P < 0.05). qRT-PCR combined with protein level analysis revealed that policosanol significantly decreased sterol regulatory element-binding protein (SREBP-1c) and CD36, and increased the expression level of cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 Family 27 Subfamily A Member 1 (CYP27A1, P < 0.05). Additionally, in the liver, policosanol was found downregulated the expression of farnesoid X receptor (FXR)-small heterodimer partner (SHP), and activate the Takeda G-coupled protein receptor 5 (TGR5)-adenosine-monophosphate-activated protein kinase (APMK) signaling pathway (P < 0.05). Peroxisome proliferator activated receptor (PPAR)-α, hormone sensitive lipase (HSL), and carnitine palmitoyltransferase (CPT)-1α also significantly increased in HP group (P < 0.05). The aforementioned results reveal that the potential mechanism of policosanol in alleviating liver lipid accumulation is to promote BA synthesis and lipolysis through regulating the cross-talk of the AMPK-FXR-TGR5. New insight for the application of policosanol as an anti-fatty liver functional food ingredient or supplement is also provided. PRACTICAL APPLICATION: Policosanol is an important active component of cereals and insect waxes (15-80%). However, almost no policosanol in refined foods such as clear corn germ oil and wheat flour. This study showed that oral administration of policosanol can significantly reduce triglyceride and cholesterol levels in the liver through affecting AMPK-TGR5-FXR cross-talk, whereas no significant toxicological effect is reported in human and mouse models. This study may provide theoretical support for the theory of dietary structure and the development of dietary supplements to improve lipid metabolism targeting the "bile acid-AMPK-TGR5" pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。