P-Glycoprotein (ABCB1/MDR1) Controls Brain Penetration and Intestinal Disposition of the PARP1/2 Inhibitor Niraparib

P-糖蛋白 (ABCB1/MDR1) 控制 PARP1/2 抑制剂尼拉帕尼的脑渗透和肠道分布

阅读:6
作者:Margarida L F Martins, Nancy H C Loos, Sümeyra Mucuk, Danielle de Jong, Maria C Lebre, Hilde Rosing, Matthijs Tibben, Jos H Beijnen, Alfred H Schinkel

Abstract

Niraparib (Zejula), a selective oral PARP1/2 inhibitor registered for ovarian, fallopian tube, and primary peritoneal cancer treatment, is under investigation for other malignancies, including brain tumors. We explored the impact of the ABCB1 and ABCG2 multidrug efflux transporters, the OATP1A/1B uptake transporters, and the CYP3A drug-metabolizing complex on oral niraparib pharmacokinetics, using wild-type and genetically modified mouse and cell line models. In vitro, human ABCB1 and mouse Abcg2 transported niraparib moderately. Compared to wild-type mice, niraparib brain-to-plasma ratios were 6- to 7-fold increased in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- but not in single Abcg2-/- mice, while niraparib plasma exposure at later time points was ∼2-fold increased. Niraparib recovery in the small intestinal content was markedly reduced in the Abcb1a/1b-deficient strains. Pretreatment of wild-type mice with oral elacridar, an ABCB1/ABCG2 inhibitor, increased niraparib brain concentration and reduced small intestinal content recovery to levels observed in Abcb1a/1b;Abcg2-/- mice. Oatp1a/1b deletion did not significantly affect niraparib oral bioavailability or liver distribution but decreased metabolite M1 liver uptake. No significant effects of mouse Cyp3a ablation were observed, but overexpression of transgenic human CYP3A4 unexpectedly increased niraparib plasma exposure. Thus, Abcb1 deficiency markedly increased niraparib brain distribution and reduced its small intestinal content recovery, presumably through reduced biliary excretion and/or decreased direct intestinal excretion. Elacridar pretreatment inhibited both processes completely. Clinically, the negligible role of OATP1 and CYP3A could be advantageous for niraparib, diminishing drug-drug interaction or interindividual variation risks involving these proteins. These findings may support the further clinical development and application of niraparib.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。