New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products

自由基 SAM 酶在硫代(硒)恶唑 RiPP 天然产物生物合成中的新作用

阅读:6
作者:Julia K Lewis, Andrew S Jochimsen, Sarah J Lefave, Anthony P Young, William M Kincannon, Andrew G Roberts, Matthew T Kieber-Emmons, Vahe Bandarian

Abstract

Ribosomally synthesized post-translationally modified peptides (RiPPs) are ubiquitous and represent a structurally diverse class of natural products. The ribosomally encoded precursor polypeptides are often extensively modified post-translationally by enzymes that are encoded by coclustered genes. Radical S-adenosyl-l-methionine (SAM) enzymes catalyze numerous chemically challenging transformations. In RiPP biosynthetic pathways, these transformations include the formation of C-H, C-C, C-S, and C-O linkages. In this paper, we show that the Geobacter lovleyi sbtM gene encodes a radical SAM protein, SbtM, which catalyzes the cyclization of a Cys/SeCys residue in a minimal peptide substrate. Biochemical studies of this transformation support a mechanism involving H-atom abstraction at the C-3 of the substrate Cys to initiate the chemistry. Several possible cyclization products were considered. The collective biochemical, spectroscopic, mass spectral, and computational observations point to a thiooxazole as the product of the SbtM-catalyzed modification. To our knowledge, this is the first example of a radical SAM enzyme that catalyzes a transformation involving a SeCys-containing peptide and represents a new paradigm for formation of oxazole-containing RiPP natural products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。